Online Multi-Task Learning based on K-SVD
نویسنده
چکیده
This paper develops an efficient online algorithm based on K-SVD for learning multiple consecutive tasks. We first derive a batch multi-task learning method that builds upon the K-SVD algorithm, and then extend the batch algorithm to train models online in a lifelong learning setting. The resulting method has lower computational complexity than other current lifelong learning algorithms while maintaining nearly identical performance. Additionally, the proposed method offers an alternate formulation for lifelong learning that supports both task and feature similarity matrices.
منابع مشابه
Online Multi-Task Learning via Sparse Dictionary Optimization
This paper develops an efficient online algorithm for learning multiple consecutive tasks based on the KSVD algorithm for sparse dictionary optimization. We first derive a batch multi-task learning method that builds upon K-SVD, and then extend the batch algorithm to train models online in a lifelong learning setting. The resulting method has lower computational complexity than other current li...
متن کاملA New Fuzzy Stabilizer Based on Online Learning Algorithm for Damping of Low-Frequency Oscillations
A multi objective Honey Bee Mating Optimization (HBMO) designed by online learning mechanism is proposed in this paper to optimize the double Fuzzy-Lead-Lag (FLL) stabilizer parameters in order to improve low-frequency oscillations in a multi machine power system. The proposed double FLL stabilizer consists of a low pass filter and two fuzzy logic controllers whose parameters can be set by the ...
متن کاملA Grouping Hotel Recommender System Based on Deep Learning and Sentiment Analysis
Recommender systems are important tools for users to identify their preferred items and for businesses to improve their products and services. In recent years, the use of online services for selection and reservation of hotels have witnessed a booming growth. Customer’ reviews have replaced the word of mouth marketing, but searching hotels based on user priorities is more time-consuming. This s...
متن کاملAn Online Q-learning Based Multi-Agent LFC for a Multi-Area Multi-Source Power System Including Distributed Energy Resources
This paper presents an online two-stage Q-learning based multi-agent (MA) controller for load frequency control (LFC) in an interconnected multi-area multi-source power system integrated with distributed energy resources (DERs). The proposed control strategy consists of two stages. The first stage is employed a PID controller which its parameters are designed using sine cosine optimization (SCO...
متن کاملDictionary Learning for SAR Images Despeckling: A Comparative Study
In recent years, dictionaries combined with sparse learning techniques became extremely popular in computer vision. The image denoising approaches can be categorized as spatial domain, transform domain, and dictionary learning based according to the image representation. Using machine learning, sparse representations have become a trend and are used image and vision applications. The general id...
متن کامل